Applied Mathematics

other 18 Pages

Contributed by

Pavan xerox
Loading
  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 1 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Important Instructions to examiners:
    1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
    2) The model answer and the answer written by candidate may vary but the examiner may try to assess the
    understanding level of the candidate.
    3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for
    subject English and Communication Skills.
    4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures
    drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
    5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and
    there may be some difference in the candidate’s answers and model answer.
    6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on
    candidate’s understanding.
    7) For programming language papers, credit may be given to any other program based on equivalent concept.
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    1.
    a)
    Ans
    b)
    Ans
    Solve any FIVE of the following:
    3
    1
    3
    3
    3
    1
    If 64 log , find
    3
    11
    64 log
    33
    1
    4 log 3
    3
    1
    41
    3
    1
    3
    3
    x
    f x x f
    f
    f
    f
    f
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    --------------------------------------------------------------------------------------------------------------------
    3
    3
    3
    If sin , show that 3 3 4
    34
    3sin 4sin
    sin3
    3
    f x x f x f x f x
    f x f x
    xx
    x
    fx
    
    3fx
    10
    02
    ½
    ½
    ½
    ½
    02
    ½
    1
    ½
    22210

    Page 1

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 2 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    1.
    b)
    c)
    Ans
    d)
    Ans
    e)
    Ans
    f)
    3
    3
    sin3
    3sin 4sin
    34
    x
    xx
    f x f x
    
    
    -------------------------------------------------------------------------------------------------------------------
    1
    1
    1
    2
    1
    2
    Find if sin
    sin
    1
    sin
    1
    1
    sin
    1
    x
    x
    xx
    x
    dy
    y e x
    dx
    y e x
    dy
    e x e
    dx
    x
    dy
    ex
    dx
    x
    
    
    
    -----------------------------------------------------------------------------------------------------------------------------
    2
    2
    2
    32
    4 3 2
    Evaluate: 1
    1
    2 1
    2
    2
    4 3 2
    x x dx
    x x dx
    x x x dx
    x x x dx
    x x x
    c
    -----------------------------------------------------------------------------------------------------------------------------
    2
    2
    2
    Evaluate: sin 2
    sin 2
    1
    2sin 2
    2
    1
    1 cos4
    2
    1 sin 4
    24
    x dx
    x dx
    x dx
    x dx
    x
    xc
    
    
    
    
    -----------------------------------------------------------------------------------------------------------------------------
    2
    Find the area bounded by the curve , -axis and ordinates 0 to 3y x x x x
    ½
    1
    ½
    02
    1+1
    02
    ½
    ½
    1
    02
    ½
    ½
    1
    02
    22210

    Page 2

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 3 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    1.
    2.
    f)
    Ans
    g)
    Ans
    a)
    Ans
    3
    2
    0
    3
    3
    0
    3
    Area
    3
    3
    0
    3
    9
    b
    a
    A y dx
    x dx
    x
    
    
    
    
    
    
    
    -------------------------------------------------------------------------------------------------------------------------
    2
    22
    1
    Express in form , where 1 and , are real number
    1
    1
    1
    11
    11
    12
    1
    1 2 1
    11
    2
    2
    0
    i
    z a ib i a b
    i
    i
    z
    i
    ii
    z
    ii
    ii
    z
    i
    i
    z
    i
    z
    z i i
    
    
    
    
    
    
    
    --------------------------------------------------------------------------------------------------------------------------
    Attempt any THREE of the following:
    2 2 3
    2 2 3
    22
    22
    If 13 2 1 , find at 1, 2
    13 2 1
    26 2 2 3 0
    26 2 4 3 0
    dy
    x x y y
    dx
    x x y y
    dy dy
    x x y x y
    dx dx
    dy dy
    x x xy y
    dx dx
    
    
    
    ½
    ½
    ½
    ½
    02
    ½
    ½
    ½
    ½
    12
    04
    1
    22210

    Page 3

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 4 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q. N.
    Answers
    Marking
    Scheme
    2.
    a)
    b)
    Ans
    c)
    Ans
    22
    22
    22
    2 3 26 4
    2 3 26 4
    26 4
    23
    at 1, 2
    18 9
    14 7
    dy dy
    x y x xy
    dx dx
    dy
    x y x xy
    dx
    dy x xy
    dx x y
    dy
    dx
    
    
    
    
    ----------------------------------------------------------------------------------------------------------------
    If sin , 1 cos , find at =
    2
    sin 1 cos
    1 cos 0 sin sin
    sin
    1 cos
    sin
    1 cos
    at =
    dy
    x a y a
    dx
    x a y a
    dx dy
    a a a
    dd
    dy
    dy a
    d
    dx
    dx a
    d
    dy
    dx
    
    
    2
    sin
    2
    1
    1 cos
    2
    dy
    dx
    -------------------------------------------------------------------------------------------------------------------------------------
    4000
    The rate of working of an engine is given by the expression 10 , where is the
    speed of the engine.Find the speed at which the rate of working is the least.
    4000
    The rate of working is, 10
    VV
    V
    WV
    V
    d
    
    2
    4000
    10
    W
    dV V
    
    1
    1
    1
    04
    1+1
    1
    1
    04
    ½
    22210

    Page 4

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 5 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    2.
    c)
    d)
    Ans
    2
    23
    2
    2
    2
    2
    3
    2
    8000
    Consider 0
    4000
    10 0
    4000
    10
    400
    20, 20
    at 20
    8000
    10
    20
    The speed is 20 at which the rate of working is least
    dW
    dV V
    dW
    dV
    V
    V
    V
    V
    V
    dW
    dV
    V
    
    
    
    
    ---------------------------------------------------------------------------------------------------------------
    2
    2
    A telegraph wire hangs in the form of a curve 2sin sin2 . Find the radius of curvature
    of the wire at the point
    2
    2sin sin 2
    2cos 2cos2
    2sin 4sin 2
    at
    2
    2cos 2cos
    2
    y x x
    x
    y x x
    dy
    xx
    dx
    dy
    xx
    dx
    x
    dy
    dx
    
    
    
    
    
    2
    2
    3
    2
    2
    3
    2
    2
    2
    2
    22
    2
    2sin 4sin 2 2
    22
    1
    12
    Radius of curvature
    2
    dy
    dx
    dy
    dx
    dy
    dx
    
    
    
    
    
    
    
    
    
    
    
    ½
    ½
    ½
    1
    1
    04
    ½
    ½
    ½
    ½
    1
    22210

    Page 5

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 6 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    2.
    3.
    d)
    a)
    Ans
    b)
    Ans
    Radius of curvature 5.59 i.e. 5.59
    ----------------------------------------------------------------------------------------------------------------
    Solve any THREE of the following:
    2
    2
    11
    Find the equation of the tangent to the curve 9 12 7 which is parellel to the axis
    9 12 7
    18 12
    tangent is parellel to the axis
    0
    18 12 0
    2
    3
    3
    2
    , ,3
    3
    slope of tan
    y x x x
    y x x
    dy
    x
    dx
    x
    dy
    dx
    x
    x
    y
    xy
    
    
    
    
    
    
    
    gent , 0
    2
    Equation of tangent at ,3 is
    3
    2
    3 0
    3
    30
    m
    yx
    y
    
    
    
    
    
    
    ------------------------------------------------------------------------------------------------------------------
    2
    sin
    Find if log
    1 cos
    sin
    log
    1 cos
    1 sin
    sin
    1 cos
    1 cos
    1 cos cos sin 0 sin
    1 cos
    sin
    1 cos
    dy x
    y
    dx x
    x
    y
    x
    dy d x
    x
    dx dx x
    x
    x x x x
    dy x
    dx x
    x
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    1
    12
    04
    ½
    ½
    ½
    ½
    ½
    1
    ½
    04
    1
    1
    22210

    Page 6

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 7 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    3.
    b)
    22
    2
    2
    1 cos cos sin
    sin 1 cos
    1 cos 1
    sin 1 cos
    1
    cos
    sin
    sin
    log
    1 cos
    2sin cos
    22
    log
    2cos
    2
    log tan
    2
    11
    sec
    22
    tan
    2
    co
    dy x x x
    dx x x
    dy x
    dx x x
    dy
    ecx
    dx x
    OR
    x
    y
    x
    xx
    y
    x
    x
    y
    dy x
    x
    dx
    dy
    dx
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    2
    22
    s
    1
    2
    2sin cos 2sin cos
    2 2 2 2
    1
    cos
    sin
    sin
    log
    1 cos
    log sin log 1 cos
    11
    cos sin
    sin 1 cos
    cos 1 cos
    sin
    sin 1 cos
    cos cos sin
    sin 1 cos
    x
    x x x x
    dy
    ecx
    dx x
    OR
    x
    y
    x
    y x x
    dy
    xx
    dx x x
    xx
    dy x
    dx x x
    dy x x x
    dx x x
    
    
    
    
    
    1
    1
    1
    1
    2
    1
    1
    ½
    1
    22210

    Page 7

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 8 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    3.
    b)
    c)
    Ans
    d)
    Ans
    cos 1 1
    cos
    sin 1 cos sin
    dy x
    ecx
    dx x x x
    -----------------------------------------------------------------------------------------------------------------
    2
    log
    If ,then prove that
    1 log
    log log
    log log
    y x y
    y x y
    y x y
    dy x
    xe
    dx
    x
    xe
    xe
    y x x y e
    
    
    2
    2
    2
    2
    log
    log
    log 1
    log 1
    log 1 log 1
    log 1
    1
    log 1 1 0
    log 1
    log 1 1
    log 1
    log
    log 1
    y x x y
    y x y x
    y x x
    x
    y
    x
    dd
    x x x x
    dy
    dx dx
    dx
    x
    xx
    dy
    x
    dx
    x
    dy x
    dx
    x
    dy x
    dx
    x
    
    
    
    
    
    
    
    
    
    --------------------------------------------------------------------------------------------------------------------------
    2
    2
    1
    1
    cos
    Evaluate:
    1 sin
    Putsin
    cos
    1
    tan
    tan sin
    x
    dx
    x
    xt
    xdx dt
    dt
    t
    tc
    xc
    
    
    
    ½
    04
    ½
    ½
    ½
    ½
    1
    1
    04
    1
    1
    1
    1
    22210

    Page 8

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 9 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.N.
    Answers
    Marking
    Scheme
    4.
    4.
    a)
    Ans
    b)
    Ans
    Solve any THREE of the following:
    log
    Evaluate:
    2 log 3 log
    log
    2 log 3 log
    Put log
    1
    23
    consider
    2 3 2 3
    32
    Put 2
    2
    Put 3
    3
    23
    2 3 2 3
    23
    2 3 2 3
    2log 2
    x dx
    x x x
    x
    dx
    x x x
    xt
    dx dt
    x
    t
    dt
    tt
    t A B
    t t t t
    t A t B t
    t
    A
    t
    B
    t
    t t t t
    t
    dt dt
    t t t t
    
    
    
    
    
    
    
    
    
    
    
    
    
    3log 3
    2log 2 log 3log 3 log
    t t c
    x x c
    --------------------------------------------------------------------------------------------------------------------------
    22
    2
    2
    Evaluate:
    3 2sin
    3 2sin
    22
    Put tan , , sin
    2 1 1
    2
    1
    2
    32
    1
    dx
    x
    dx
    x
    x dt t
    t dx x
    tt
    dt
    t
    t
    t
    
    
    
    
    12
    04
    ½
    ½
    ½
    ½
    ½
    1
    ½
    04
    1
    22210

    Page 9

  • MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
    (Autonomous)
    (ISO/IEC - 27001 - 2013 Certified)
    __________________________________________________________________________________________________
    Page 10 of 18
    SUMMER 18 EXAMINATION
    Subject Name: Applied Mathematics Model Answer Subject Code:
    Q.
    No.
    Sub
    Q.
    N.
    Answers
    Marking
    Scheme
    4.
    b)
    c)
    Ans
    2
    2
    2
    2
    2
    2
    2
    2
    2
    1
    1
    2
    3 1 2 2
    2
    3 3 4
    2
    3 4 3
    2
    4
    3
    1
    3
    1 4 4
    ..
    2 3 9
    2
    4 4 4
    3
    1
    3 9 9
    2
    3
    25
    39
    2
    3
    25
    33
    2
    21
    3
    tan
    3
    55
    33
    2
    tan
    2
    23
    tan
    55
    3
    dt
    tt
    dt
    tt
    dt
    tt
    dt
    tt
    TT
    dt
    tt
    dt
    t
    dt
    t
    t
    c
    x
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    c
    
    
    ------------------------------------------------------------------------------------------------------------------------------------
    1
    2
    1
    2
    sin
    Evaluate:
    1
    sin
    1
    xx
    dx
    x
    xx
    dx
    x
    ½
    ½
    ½
    ½
    ½
    ½
    04
    22210

    Page 10

Download this file to view remaining 8 pages

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.