CONCEPT RECAPITULATION TEST - II Paper 1 [ANSWERS, HINTS & SOLUTIONS CRT –II]

other 12 Pages
SK

Contributed by

Swati Kant
Loading
  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    1
    ANSWERS, HINTS & SOLUTIONS
    CRT –II
    (Paper-2)
    Q.
    No.
    PHYSICS CHEMISTRY MATHEMATICS
    1.
    A B D
    2.
    B D B
    3.
    C A B
    4.
    C A B
    5.
    D D B
    6.
    A D B
    7.
    A A B
    8.
    A C C
    9.
    A D B
    10.
    A D A
    11.
    D A B
    12.
    A B A
    13.
    B D A
    14.
    A B C
    15.
    B, D B, C, D A, C
    16.
    B, C A, B A, D
    17.
    A, C A, B A, B, C
    18.
    B, C, D A, B, D B, D
    19.
    B, D A, D A, D
    20.
    A, B, C, D A, C, D A, C, D
    ALL INDIA TEST SERIES
    FIITJEE
    JEE(Advanced)-2014
    From Classroom/Integrated School Programs
    7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in To
    p 500 All India Ranks & 2314 Students
    from Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013

    Page 1

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    2
    P
    P
    h
    h
    y
    y
    s
    s
    i
    i
    c
    c
    s
    s PART – I
    2. = tan
    2
    2 2
    1
    g
    2 u cos
    = tan
    2
    2
    1
    g 1 tan
    2 2g
    tan
    2
    4 tan +
    4
    1
    = 0
    (, )
    u
    2g
    u
    If particle will not hit the target.
    (b
    2
    4ac) < 0
    16 4
    4
    1
    < 0
    4 > 3
    3. At B, mg sin =
    2
    B
    mv
    r
    . . . (1)
    Using energy considerations
    2
    B
    1
    mv
    2
    = mgr(cos sin ) . . . (2)
    B
    A
    Smooth
    N
    v
    B
    From (1) and (2)
    mg sin = 2mg(cos sin )
    2cos = 3 sin
    7. i =
    5A
    2
    2
    2
    m
    q
    q 1
    Li
    2C 2C 2
    q
    max
    = 6 C
    8. Time period does not depend on amplitude SHM and both particle will exchange velocity at every
    collision.
    15. The slope of curve at such a point will be 1
    dy x
    2cos 1
    dx L
    x =
    L
    3
    or
    2L
    3
    y
    x
    135
    45
    16.
    1
    P m 16 2m 0 16m
    ' '
    f A B
    P mv 2mv
    2
    B
    1
    2mv 2mgh
    2
    B
    v 10
    m/s
    16 m =
    '
    A
    mv 2m 10
    '
    A
    v 4m/s
    ' '
    B A
    A B
    v v
    e
    v v
    =
    10 ( 4) 14 7
    16 0 16 8

    Page 2

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    3
    17. If v be the velocity at mean position in two cars then
    2 2 2
    1 2
    1 1 1
    mv KA KA
    2 2 2
    and
    1 2
    m
    T T 2
    K
    A
    1
    = A
    2
    18. Initially potential and kinetic both energies zero and from conservation of mechanical energy total
    energy of the two object zero
    Further, decrease in P.E. = increase in K.E.
    2
    r
    G(m)(4m) 1
    v
    r 2
    r
    10Gm
    v
    r
    Total K.E.
    2
    G(m)(4m) 4Gm
    r r

    Page 3

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    4
    C
    C
    h
    h
    e
    e
    m
    m
    i
    i
    s
    s
    t
    t
    r
    r
    y
    y PART – II
    SECTION – A
    1.
    4
    6
    XeO
    (perxenate ion) because oxidation state of Xe is +8 and it is highly unstable compound.
    2.
    Br
    Due to formation of resonance stabilized carbocation.
    3.
    293.4
    CRT,So,C 0.1 mol / L
    RT 8.31 293
    If 100 ml contains 6.33 g of haematin.
    1 L will contain 63.3 g of haematin.
    Molecular mass of haematin = 633 u
    Estimating the empirical formula of compound
    C : H : N : O : F =
    64.6 5.2 8.8 12.6 8.8
    : : : :
    12 1 14 16 56
    34 : 33 : 4 : 5 :1
    So, empirical formula is C
    34
    H
    33
    N
    4
    O
    5
    Fe, whose mass corresponds to the molecular mass.
    4.
    2 2 4 2
    o o
    Zn /ZnY / Y Zn /Zn
    0.059
    E E logK
    2
    2
    f
    4
    f
    ZnY
    1
    K K
    K
    Y
    2 2 4
    o
    10
    16
    Zn / ZnY / Y
    0.059 1
    E 0.76 log
    2
    3.2 10
    = - 1.25 V
    5.
    f f
    T 0.5K iK m
    f
    f
    T
    0.5
    i 1.022
    K m 1.86 0.263
    HA H A
    1 0 0
    1
    
    i 1 0.022
    K
    a
    = C
    2
    = 0.2 × (0.022)
    2
    = 9.6 × 10
    -5
    pK
    a
    = 4.0177
    On adding 0.25 M NaA, buffer is formed.

    Page 4

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    5
    a 10
    Salt
    pH pK log 4.0177 0.0969
    Acid
    = 4.1146
    6.
    2 4 7 2 3 3
    Strongbase
    Weak acid
    Alkaline
    Na B O 7H O 2NaOH 4H BO
    
    
    2 4 7 2 2 3
    Glassy bead
    Na B O 2NaBO B O
    
    
    2 4 7 2 4 2 2 4 3 3
    White crystals
    Na B O H SO 5H O Na SO 4H BO
    
    7.
    CH
    3
    OH
    CH CH
    2
    H
    
    CH
    3
    OH
    CH CH
    3
    Ring
    expansion
    
    O
    CH
    3
    H
    H
    3
    C
    H
    O
    CH
    3
    H
    3
    C
    8.
    O
    O
    N
    K
    +
    ||
    2 2 5
    O
    KCl
    Cl CH C OC H
    
    N
    O
    O
    CH
    2
    C
    O
    OC
    2
    H
    5
    X
    Y
    2
    2 5
    H /H O
    2 2
    C H OH
    Glycine
    H N CH COOH
    O
    O
    OH
    OH
    Z
    9.
    Burning
    2 3 2
    A
    B
    3M N M N
    3 2 2 3
    2
    B D
    C
    M N 6H O 3M OH 2NH
    
    All statement with respect to NH
    3
    are correct.
    10. Ba and Ca quite readily liberate hydrogen.
    In cold water Mg decomposes water only on heating. So, element (A) may be Ca and Ba not Mg.
    2 2
    Lime water Baryta water
    Ca OH & Ba OH
    , both givess milkiness with CO
    2
    .
    11.
    2
    1 1 2
    P
    H 1 1
    2.303log
    P R T T
    1
    H 11.99 kJmol

    Page 5

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    6
    12
    2
    2
    1
    b
    3
    8.314 353 100
    RT M
    K 8.64 Kkgmol
    1000 H 1000 11.99 10
    b b
    T K 1 m
    1 1000
    1 8.64 1
    100 100
    = 0.158
    13. Two structural isomers of (A) are:
    Me
    Me
    Me
    OH
    &
    Me
    Me
    OH
    Me
    There are four geometrical isomers for each strucutre, i.e. total number of stereoiosmers = 8.
    14. Convert aldehyde and ketone to alcohol
    (1)
    OH
    (5C )
    (2)
    OH
    OH
    (6C )
    (3)
    (2C )
    OH
    OH
    15.
    OOH
    H
    H
    CH
    2
    OH
    H
    OH
    OH
    H
    H
    O
    O
    H
    CH
    2
    OH
    H
    OH
    OH
    H
    H
    OH
    H
    16. (A)
    N
    H
    H
    H
    N
    F
    F
    F
    3 3
    NH NF
    (B) (I) is 3
    o
    allylic with extended conjugation.
    (II) is 3
    o
    allylic, (III) is 3
    o
    free radical.
    (C) Correct order is:
    3
    RS CH O OH Basic strength
    (D) Correct order is:
    I Br Cl F Basic strength
    17. (A)
    4 3 3 3 2
    NH NO NaOH NH NaNO H O
    3 2 2 3 2
    7NaOH NaNO 4Zn 4Na ZnO NH 2H O
    
    (B)
    4 2 2 3 2
    NH NO NaOH NaNO NH H O
    3 2 2 3 2
    3Zn 5NaOH NaNO 3Na ZnO NH H O
    
    18.
    rms
    3RT 3PV 3P
    v
    M M d
    19. In metal carbonyls,
    M CO
    , the C O bond length increases compared to that in CO
    molecules due to synergic bonding between metal and carbonyl ligand.

    Page 6

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    7
    Facial and meridenal isomers
    n
    3 3
    Ma b
    contains plane of symmetry.
    20.
    3 2 3
    CH COO H O CH COOH OH
    0.1 1 h 0.1h 0.1h
    
    2 5
    h
    0.1h 0.1h
    K 0.1h h 7.48 10
    0.1 1 h
    5 1 6
    OH Ch 7.48 10 10 7.48 10
    14
    9
    W
    5
    K
    10
    H 1.33 10
    7.48 10
    OH
    And pH = 8.8 approx.

    Page 7

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    8
    M
    M
    a
    a
    t
    t
    h
    h
    e
    e
    m
    m
    a
    a
    t
    t
    i
    i
    c
    c
    s
    s PART – III
    1. We express x in terms of a new variable y
    1
    x 1
    y
    y 1
    x
    y
    5 3 2
    5 3 2
    6 y 1 5 y 1 y 1 4 y 1
    1
    y
    y y y
    =
    5 4 3 2
    a b c d e
    f
    y
    y y y y
    Multiplying both side by y
    6
    we get 6y(y + 1)
    5
    + 5y
    3
    (y + 1)
    3
    + y
    4
    (y + 1)
    2
    + 4y
    5
    (y + 1) – y
    6
    = ay + by
    2
    + cy
    3
    + dy
    4
    + ey
    5
    + fy
    6
    Differentiating both side and then satisfying y = 1
    Gives the value a + 2b + 3c + 4d + 5e + 6f = 910
    2.
    50
    n 51 n
    n 1
    f x x n
    50
    n 1
    ln f x n 51 n ln x n
    Differentiating both side w.r.t. x
    50
    n 1
    f ' x n 51 n
    f x x n
    f ' 51
    1275
    f 51
    3. a
    2
    = b
    2
    + c
    2
    – 2bc cos A = (b – c)
    2
    + 2bc(1 – cos A)
    =
    1
    bcsinA
    2
    4
    2bc
    sinA
    2
    2
    4
    a b c 1 cosA
    sinA
    = (b – c)
    2
    +
    A
    4 tan
    2
    Since A and are fixed hence a is minimum when b = c
    Hence 2bc = 2b
    2
    =
    4
    sinA
    4.
    f 3x 3y f 3x 3y
    sin 2x 3y sin 2x 2y
    x, y R
    2x
    f x ksin
    3
    2
    f ' 0 k 1
    3
    3
    k
    3 2x
    f x sin
    2 3
    3 3
    f '
    2 4
    Equation of tangent is
    3 3 1
    y x
    4 2 2
    5.
    i j
    1 i j m
    aa
    =
    2
    m m
    2
    i i
    i 1 i 1
    1
    a a
    2

    Page 8

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    9
    =
    2
    m 2 2m
    1 1
    2
    a 1 r a 1 r
    1
    2 1 r
    1 r
    =
    2
    2
    m 2m
    1
    a
    1 r 1 r
    2 1 r 1 r 1 r
    =
    m 1 m
    1 1
    a 1 r a 1 r
    r
    1 r 1 r 1 r
    =
    m 1 m
    r
    S S
    1 r
    6. Use L’Hospital’s Rule twice
    7. g(x) =
    3
    2
    f x dx
    x x 1
    =
    2 2 3
    A B C D E
    dx
    x x 1
    x
    x 1 x 1
    =
    2
    B D E
    Alnx cln 1 x
    x 1 x
    2 x 1
    Since g(x) is a rational function, hence logarithmic function must be absent
    A = C = 0
    2 2 3
    B D E
    g x dx
    x
    x 1 x 1
    f(x) = (B + D)x
    3
    + (3B + D + E)x
    2
    + 3Bx + B
    B + D = 0, f(0) = 1 gives B = 1 D = –1
    f(x) = (2 + E)x
    2
    + 3x + 1
    f(x) = 2(2 + E)x + 3
    f(0) = 3
    8. Denoting the two curve by S
    1
    and S
    2
    the equation of curve S passing through intersection of S
    1
    and S
    2
    can be S = S
    1
    + S
    2
    = 0. Since S is circle
    Coefficient of x
    2
    = Coefficient of y
    2
    , Coefficient of xy = 0 we get = 1
    S = (a + a)(x
    2
    + y
    2
    ) – 2(g + g)x – 2(f + f)y + 2c = 0
    The centre is
    g' g f ' f
    ,
    a' a a' a
    which is P
    PA
    2
    + PB
    2
    + PC
    2
    = 3(Radius)
    2
    = 3(PD)
    2
    9.
    x
    sinx sin
    180
    x
    sinx sin
    180
    or
    x
    sin 2
    180
    x
    x
    180
    ,
    x
    x 2
    180
    180
    x
    180
    ,
    360
    x
    180
    On comparing, m = 360, n = 180, p = 180, q = 180
    (m + n + p + q) = 900
    10.
    2 2
    x
    A C x Bx
    lim 2
    B
    x A C
    x
    
    For existence of limit A = C
    2

    Page 9

  • AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    10
    Hence,
    C A
    ,
    B
    2
    A C
    B
    4
    C
    For
    C A
    limit does not exist
    11. The visible are of P(2, –6) is the area of ABP ABP has base AB of length 4 and its height is the
    distance from AB to point P. Which is 10, since AB is parallel to x–axis.
    Thus area =
    1
    b h 20
    2
    12. Similarly area = QBC =
    1 1
    b h 4 4 8
    2 2
    13. LHD =
    2
    h 0
    sinh tanh cosh 1
    2h ln(2 h) tanh
    lim
    h
    =
    2
    2
    h 0
    sinh tanh 1 cosh
    h
    h h
    h
    lim 0
    2h ln 2 h tanh
    RHD =
    2 2
    h h
    h 0
    e 1 0 e 1
    lim h 0
    h h
    L
    1
    y = 0, L
    2
    x = 0
    14.
    1
    2 cot cot 1
    2 4 2 2
    =
    2sin
    4
    1
    2 sin sin
    4 2 2
    =
    2
    1
    cos cos
    4 4
    min
    2
    1 1 2 2 1 3 2 2
    1
    1
    2
    15. Four point A, B, C, D are coplanar if three vector
    AB
    ,
    AC
    ,
    AD
    are coplanar or STP of there
    vectors is 0
    AB AC AD 0
     
    1 0 0
    3 f t 1 0
    2 f ' t 2
    t R
    f(t) = 2f(t)
    f(t) = ce
    2t
    Similarly for
    ˆ ˆ
    B i j
    differential equation will be f(t) –2 f(t) = –4
    On solving f(x) = 2 + ce
    2x
    , c R

    Page 10

Download this file to view remaining 2 pages

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.