CONCEPT RECAPITULATION TEST - II Paper 1 [ANSWERS, HINTS & SOLUTIONS CRT –II]
other
12 Pages
SK
Contributed by
Swati Kant
Loading
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com1ANSWERS, HINTS & SOLUTIONSCRT –II(Paper-2)Q.No.PHYSICS CHEMISTRY MATHEMATICS1.A B D2.B D B3.C A B4.C A B5.D D B6.A D B7.A A B8.A C C9.A D B10.A D A11.D A B12.A B A13.B D A14.A B C15.B, D B, C, D A, C16.B, C A, B A, D17.A, C A, B A, B, C18.B, C, D A, B, D B, D19.B, D A, D A, D20.A, B, C, D A, C, D A, C, DALL INDIA TEST SERIESFIITJEEJEE(Advanced)-2014From Classroom/Integrated School Programs7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Studentsfrom Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013
Page 1
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com2PPhhyyssiiccss PART – I2. = tan 22 21g2 u cos = tan 221g 1 tan2 2g tan2 4 tan +41 = 0(, )u2guIf particle will not hit the target.(b2 4ac) < 016 441 < 04 > 33. At B, mg sin =2Bmvr. . . (1)Using energy considerations2B1mv2= mgr(cos sin ) . . . (2)BASmoothNvBFrom (1) and (2)mg sin = 2mg(cos sin )2cos = 3 sin 7. i =5A222mqq 1Li2C 2C 2 qmax= 6 C8. Time period does not depend on amplitude SHM and both particle will exchange velocity at everycollision.15. The slope of curve at such a point will be 1dy x2cos 1dx L x =L3or2L3yx1354516.1P m 16 2m 0 16m ' 'f A BP mv 2mv 2B12mv 2mgh2 Bv 10 m/s16 m ='Amv 2m 10 'Av 4m/s ' 'B AA Bv vev v=10 ( 4) 14 716 0 16 8
Page 2
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com317. If v be the velocity at mean position in two cars then2 2 21 21 1 1mv KA KA2 2 2 and1 2mT T 2K A1= A218. Initially potential and kinetic both energies zero and from conservation of mechanical energy totalenergy of the two object zeroFurther, decrease in P.E. = increase in K.E.2rG(m)(4m) 1vr 2 r10GmvrTotal K.E.2G(m)(4m) 4Gmr r
Page 3
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com4CChheemmiissttrryy PART – IISECTION – A1.46XeO(perxenate ion) because oxidation state of Xe is +8 and it is highly unstable compound.2.BrDue to formation of resonance stabilized carbocation.3.293.4CRT,So,C 0.1 mol / LRT 8.31 293 If 100 ml contains 6.33 g of haematin.1 L will contain 63.3 g of haematin.Molecular mass of haematin = 633 uEstimating the empirical formula of compoundC : H : N : O : F =64.6 5.2 8.8 12.6 8.8: : : :12 1 14 16 5634 : 33 : 4 : 5 :1So, empirical formula is C34H33N4O5Fe, whose mass corresponds to the molecular mass.4.2 2 4 2o oZn /ZnY / Y Zn /Zn0.059E E logK2 2f4fZnY1K KKY 2 2 4o1016Zn / ZnY / Y0.059 1E 0.76 log23.2 10 = - 1.25 V5.f fT 0.5K iK m ffT0.5i 1.022K m 1.86 0.263 HA H A1 0 01 i 1 0.022 Ka= C2= 0.2 × (0.022)2= 9.6 × 10-5 pKa= 4.0177On adding 0.25 M NaA, buffer is formed.
Page 4
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com5 a 10SaltpH pK log 4.0177 0.0969Acid = 4.11466.2 4 7 2 3 3StrongbaseWeak acidAlkalineNa B O 7H O 2NaOH 4H BO 2 4 7 2 2 3Glassy beadNa B O 2NaBO B O 2 4 7 2 4 2 2 4 3 3White crystalsNa B O H SO 5H O Na SO 4H BO 7.CH3OHCH CH2HCH3OHCH CH3RingexpansionOCH3HH3CHOCH3H3C8.OONK+||2 2 5OKClCl CH C OC H NOOCH2COOC2H5 X Y22 5H /H O2 2C H OHGlycineH N CH COOH OOOHOH Z9. Burning2 3 2AB3M N M N 3 2 2 32B DCM N 6H O 3M OH 2NH All statement with respect to NH3are correct.10. Ba and Ca quite readily liberate hydrogen.In cold water Mg decomposes water only on heating. So, element (A) may be Ca and Ba not Mg. 2 2Lime water Baryta waterCa OH & Ba OH, both givess milkiness with CO2.11.21 1 2PH 1 12.303logP R T T 1H 11.99 kJmol
Page 5
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com612 221b38.314 353 100RT MK 8.64 Kkgmol1000 H 1000 11.99 10 b bT K 1 m 1 10001 8.64 1100 100 = 0.15813. Two structural isomers of (A) are:MeMeMeOH&MeMeOHMeThere are four geometrical isomers for each strucutre, i.e. total number of stereoiosmers = 8.14. Convert aldehyde and ketone to alcohol(1)OH(5C )(2)OHOH(6C )(3)(2C )OHOH15.OOHHHCH2OHHOHOHHHOOHCH2OHHOHOHHHOHH16. (A)NHHHNFFF3 3NH NF (B) (I) is 3oallylic with extended conjugation.(II) is 3oallylic, (III) is 3ofree radical.(C) Correct order is:3RS CH O OH Basic strength (D) Correct order is:I Br Cl F Basic strength 17. (A)4 3 3 3 2NH NO NaOH NH NaNO H O 3 2 2 3 27NaOH NaNO 4Zn 4Na ZnO NH 2H O (B)4 2 2 3 2NH NO NaOH NaNO NH H O 3 2 2 3 23Zn 5NaOH NaNO 3Na ZnO NH H O 18.rms3RT 3PV 3PvM M d 19. In metal carbonyls,M CO, the C – O bond length increases compared to that in COmolecules due to synergic bonding between metal and carbonyl ligand.
Page 6
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com7Facial and meridenal isomers n3 3Ma bcontains plane of symmetry.20. 3 2 3CH COO H O CH COOH OH0.1 1 h 0.1h 0.1h 2 5h0.1h 0.1hK 0.1h h 7.48 100.1 1 h 5 1 6OH Ch 7.48 10 10 7.48 10 149W5K10H 1.33 107.48 10OH And pH = 8.8 approx.
Page 7
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com8MMaatthheemmaattiiccss PART – III1. We express x in terms of a new variable y1x 1y y 1xy 5 3 25 3 26 y 1 5 y 1 y 1 4 y 11yy y y =5 4 3 2a b c d efyy y y y Multiplying both side by y6we get 6y(y + 1)5+ 5y3(y + 1)3+ y4(y + 1)2+ 4y5(y + 1) – y6= ay + by2+ cy3+ dy4+ ey5+ fy6Differentiating both side and then satisfying y = 1Gives the value a + 2b + 3c + 4d + 5e + 6f = 9102. 50n 51 nn 1f x x n 50n 1ln f x n 51 n ln x n Differentiating both side w.r.t. x 50n 1f ' x n 51 nf x x n f ' 511275f 513. a2= b2+ c2– 2bc cos A = (b – c)2+ 2bc(1 – cos A) =1bcsinA242bcsinA 224a b c 1 cosAsinA = (b – c)2+A4 tan2Since A and are fixed hence a is minimum when b = cHence 2bc = 2b2=4sinA4. f 3x 3y f 3x 3ysin 2x 3y sin 2x 2y x, y R 2xf x ksin3 2f ' 0 k 13 3k2 3 2xf x sin2 3 3 3f '2 4 Equation of tangent is3 3 1y x4 2 2 5.i j1 i j maa =2m m2i ii 1 i 11a a2
Page 8
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com9= 2m 2 2m1 12a 1 r a 1 r12 1 r1 r = 22m 2m1a1 r 1 r2 1 r 1 r 1 r =m 1 m1 1a 1 r a 1 rr1 r 1 r 1 r =m 1 mrS S1 r6. Use L’Hospital’s Rule twice7. g(x) = 32f x dxx x 1= 2 2 3A B C D Edxx x 1xx 1 x 1 = 2B D EAlnx cln 1 xx 1 x2 x 1 Since g(x) is a rational function, hence logarithmic function must be absent A = C = 0 2 2 3B D Eg x dxxx 1 x 1 f(x) = (B + D)x3+ (3B + D + E)x2+ 3Bx + B B + D = 0, f(0) = 1 gives B = 1 D = –1f(x) = (2 + E)x2+ 3x + 1f(x) = 2(2 + E)x + 3f(0) = 38. Denoting the two curve by S1and S2the equation of curve S passing through intersection of S1and S2can be S = S1+ S2= 0. Since S is circle Coefficient of x2= Coefficient of y2, Coefficient of xy = 0 we get = 1S = (a + a)(x2+ y2) – 2(g + g)x – 2(f + f)y + 2c = 0The centre isg' g f ' f,a' a a' a which is PPA2+ PB2+ PC2= 3(Radius)2= 3(PD)29.xsinx sin180 xsinx sin180 orxsin 2180 xx180 ,xx 2180 180x180 ,360x180 On comparing, m = 360, n = 180, p = 180, q = 180 (m + n + p + q) = 90010.2 2xA C x Bxlim 2Bx A Cx For existence of limit A = C2
Page 9
- AITS-CRT-II-(Paper-2)-PCM(S)-JEE(Advanced)/14FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942website: www.fiitjee.com10Hence,C A ,B2A CB4CForC A limit does not exist11. The visible are of P(2, –6) is the area of ABP ABP has base AB of length 4 and its height is thedistance from AB to point P. Which is 10, since AB is parallel to x–axis.Thus area =1b h 202 12. Similarly area = QBC =1 1b h 4 4 82 2 13. LHD =2h 0sinh tanh cosh 12h ln(2 h) tanhlimh = 22h 0sinh tanh 1 coshhh hhlim 02h ln 2 h tanh RHD =2 2h hh 0e 1 0 e 1lim h 0h h L1 y = 0, L2 x = 014.12 cot cot 12 4 2 2 =2sin412 sin sin4 2 2 =21cos cos4 4 min21 1 2 2 1 3 2 2112 15. Four point A, B, C, D are coplanar if three vectorAB,AC,ADare coplanar or STP of therevectors is 0AB AC AD 0 1 0 03 f t 1 02 f ' t 2 t R f(t) = 2f(t) f(t) = ce2tSimilarly forˆ ˆB i jdifferential equation will be f(t) –2 f(t) = –4On solving f(x) = 2 + ce2x, c R
Page 10
Download this file to view remaining 2 pages
Related documents:
- Drama 1 - MCQ
- Vyakarana 1 Core IV MCQs - MCQ
- Risk Management MCQs - MCQ
- Public Administration (Paper II) 2020 Question Paper - Question Paper
- CONCEPT RECAPITULATION TEST - IV Paper 1 - Question Paper
- CONFIGURATION TALLY - EBA - Notes
- QP IFSM-23 GENERAL KNOWLEDGE - Question Paper
- Zoology (Paper II) 2017 Question Paper
- Political Science and International Relations (Paper II) 2021 Question Paper - Question Paper
- Pedagogy - Question Bank
- Political Science and International Relations (Paper I) 2019 Question Paper - MCQ
- Lyrics - Complementary Course VII MCQs - MCQ
- Financial Markets and Banking Operations MCQs - MCQ
- ADE (UNIT-III) MCQs - MCQ
- Sociology (Paper I) 2017 Question Paper - MCQ
- TREND PERCENTAGES - FINANCIAL STATEMENT ANALYSIS - Question Paper
- Economics (Paper I) 2017 Question Paper - Question Paper
- Public Administration (Paper II) 2019 Question Paper - Question Paper
- CONCEPT RECAPITULATION TEST - II Paper 2 [ANSWERS, HINTS & SOLUTIONS CRT –II]
- PHARMACEUTICS- II Question and Answers - MCQ