CONCEPT RECAPITULATION TEST - IV [ANSWERS, HINTS & SOLUTIONS CRT–IV]

other 9 Pages
BM

Contributed by

Baldev Mehan
Loading
  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    1
    ANSWERS, HINTS & SOLUTIONS
    CRT–IV
    (Main)
    Q. No. PHYSICS CHEMISTRY MATHEMATICS
    1.
    A D D
    2.
    B B B
    3.
    D C C
    4.
    D A D
    5.
    C B B
    6.
    C B A
    7.
    A D C
    8.
    A A C
    9.
    B B C
    10.
    C D B
    11.
    A A A
    12.
    C C D
    13.
    D C A
    14.
    B A C
    15.
    A A A
    16.
    A A B
    17.
    D C C
    18.
    C B B
    19.
    D B D
    20.
    A B C
    21.
    B A A
    22.
    B D C
    23.
    D B A
    24.
    C C A
    25.
    C A D
    26.
    A D C
    27.
    D A B
    28.
    C D C
    29.
    C A D
    30.
    B B B
    ALL INDIA
    TEST SERIES
    FIITJEE
    JEE(Main)-2014
    From Classroom/Integrated School Programs 7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Students
    from Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013

    Page 1

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    2
    P
    P
    h
    h
    y
    y
    s
    s
    i
    i
    c
    c
    s
    s PART – I
    SECTION – A
    1.
    2. 2.4 km downstream from the point directly opposite to 0
    3. rate of change of speed
    = tangential component of acceleration
    (component of acceleration in the direction of velocity)
    ˆ ˆ
    3i 3j 6 4
    ˆ ˆ
    a.v (2i j) . 2m / s
    5 5
    4. Force is always perpendicular to velocity
    5. elementary mass = x dy
    x = R cos, y = R sin
    dy = R cos d
    elementary mass = (Rcos) (Rcos d)
    = R
    2
    cos
    2
    d
    /2
    2 2
    0
    an
    /2
    2 2
    0
    Rcos R cos d
    ydm
    y
    .dm
    R cos d
    4
    R
    3
    6. Let the block is in translational equilibrium and ready to
    topple.
    = F
    N = mg
    Taking torque about C.O.M. = 0
    a a a
    F N
    2 2 2
    f
    2F = N
    F
    N
    mg
    = F
    R
    x
    y
    y
    x
    n
    a
    a
    t
    a
    v
    For maximum
    1N
    3N
    9N
    10N
    23N
    A triangle is possible with sides 4 unit, 9 unit and 10 unit. Hence minimum
    resultant is zero.
    3N
    1N
    9N
    10N

    Page 2

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    3
    N
    F
    2
    N
    2
    f
    but
    N
    f
    N
    N
    2
    1
    2
    7.
    o
    o
    s
    V V
    V V
    f f
    .
    Here, V
    o
    = u + at
    V
    s
    = 0
    varies linearly with ‘t’.
    8. As long as cylinder is completely inside, B is constant in magnitude, then its value decreases
    linearly with displacement and finally becomes zero.
    9.
    2
    2
    n
    5
    V
    R 5 5m
    1
    a
    5
    10. Applying work-energy theorem w.r.t wedge
    19.
    0 0 0 0
    P
    kq kq kq 3kq
    V
    2a a a / 2 2a
    .
    20. Pitch =
    1.5
    0.3
    5
    mm
    Least count =
    0.3
    0.006
    50
    mn
    21.
    1 1 2 2
    m v m v
    2 1 1 2
    v m v / m
    (1)
    2 2
    2 1 1 2
    2
    2
    a 1 1
    m g m v m v
    2 2
    kx
    2 2
    1
    (2) From work energy theorem
    Substituting (1) in (2) and solving
    2
    2 2
    1
    1 1 2
    m (ka 4 m ga)
    v
    4m (m m )
    = 10 cm/s
    22. Mechanical energy loss happens due to viscous/frictional forces without which the liquid will
    oscillate. This is released as heat
    1/ms
    at t = 0
    at t = 1sec
    5
    1/ms
    2/ms
    1m/s
    2
    1m/s
    2

    Page 3

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    4
    23.
    2
    3
    GMm
    mr
    r
    3 2
    GM r
    (GM = gr
    2
    )
    3 2
    2
    r .
    g
    R
    3 2
    2 2
    (4nR) .
    g
    n .R
    2
    g 64 nR
    .
    24. Frequencies are in odd ratio hence it is a closed organ pipe.
    v
    freq (2n 1)
    4L
    2v
    (frequency) 100Hz
    4L
    L = 1.7 m.
    25. For maximum elongation charges on the blocks must be equal to
    Q
    2
    on each block.
    2
    2
    0 0
    Q
    1
    2
    kx
    4 ( x)
    
    0 0
    Q 2( x) 4 kx
     .
    26. Number of emitted electrons
    12 4
    5
    10 2 10 25
    10
    = 5 × 10
    4
    electrons
    q = + ne = 8 × 10
    –15
    C.
    27.
    3 6
    R 2
    3 6
    1 2
    1 1 1
    R R R
    1 2
    2 2 2
    1 2
    dR dR
    dR
    R R R
    % error =
    R
    100%
    R
    =
    1 2
    1 1 2 2
    R R
    1 1
    R 100 100 %
    R R R R
    =
    1 1
    2 1 2 %
    3 6
    =
    4
    %
    3
    28. As V increases, E increases,
    min
    decreases,
    K
    remains constant so (
    K
    min
    ) increases
    29. Increasing the filament current increases the intensity because more electron
    now strike the target. Decreasing the potential difference increases the minimum wavelength.
    30.
    5
    9
    1.6 1 1.8 10
    900 10
    = 12

    Page 4

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    5
    C
    C
    h
    h
    e
    e
    m
    m
    i
    i
    s
    s
    t
    t
    r
    r
    y
    y PART – II
    SECTION – A
    1.
    CH
    3
    HC
    OEt
    OEt
    (p) (Acetal)
    3
    H O
    3
    CH CHO
    
    : differentiated by Na, Fehling and Tollen’s test
    3
    H O
    3 2 2 3
    CH CH O CH CH EtOH; differentiated by Na,Fehling
    andTollen's test
    q
    
    2.
    Ag/AgX/X
    E
    =
    Ag/Ag
    E
    + Kspln
    F
    RT
    3. Compounds with more covalent nature, was unable to respond to chromyl chloride test ‘SnCl
    4
    ’,
    due to mole polarizing power of Sn
    +4
    the compound is more covalent.
    5.
    2
    3
    c
    2
    2 2
    SO
    K
    SO O
    c
    2
    1
    K 100
    O
    [O
    2
    ] = 10
    2
    2
    n
    10
    10
    n = 0.1
    6.
    2
    2
    1
    2
    1
    1
    21
    T
    VP
    T
    VP
    T
    V2P
    nnn
    8. x
    A
    = 0.3 , x
    B
    = 0.7
    T
    B
    B
    T
    A
    A
    P
    P
    y,
    P
    P
    y
    2
    7
    xP
    xP
    2
    3
    4.0
    6.0
    y
    y
    BB
    AA
    B
    A
    9. RbCl and KCl have rock salt structure
    5.0aa
    KClRbCl
    5.0rr2rr2
    ClKClRb
    Hence
    A33.1r
    K
    11. Intramolecular aldol condensation.
    12. Perkins’s reaction

    Page 5

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    6
    13. Bromination of benzylic carbon followed by hydrolysis
    14. Hoffmann elimination, least stable alkene will be the major product.
    16. -Hydroxy compound is easily dehydrated.
    17.
    2 2
    2AB (g) 2AB(g)+B (g)
    1 0 0
    1-x x x/
    2
    
    Total moles = 1 – x + x + x/2 = 1 + x/2.
    2
    p
    2
    x 2 x
    p
    k =
    1+x/2
    1-x
    [
    x is small, 1-x = 1 and 1 + x/2 = 1].
    1
    3
    3
    p p p
    x p
    k = Þ x = 2k P = 2k P
    2
    19. At constant pressure, the addition of inert gas shifts the equilibrium towards larger no. of moles.
    20. The hybridisation of B in
    3
    BBr
    is
    2
    sp
    that C in
    2
    CS
    is sp, that of S in
    2
    SO
    is
    2
    sp
    while that of
    S in
    SF
    is
    3
    sp d
    . Hence
    2
    CS
    has the maximum bond angle of 180°.
    27.
    3 2 3 2
    NaHCO NaOH Na CO H O
    
    28. For a bcc lattice
    o
    X 0.4
    0.732 Y 0.546A
    Y 0.732
    Now, for fcc lattice,
    Z
    0.414 Z Y 0.414
    Y
    = 0.546 × 0.414
    = 0.226
    o
    A
    29.
    C
    O
    H
    C
    O
    Ph
    O
    H
    C
    O
    Ph
    (I)
    O
    C
    H
    Cl
    C HCl
    Cl HO
    (II)
    C
    C
    O
    O
    C
    H
    O
    O
    H
    (III)
    H C
    O
    O
    H
    H
    H
    (V)
    30. Hint: It is Acyl Cleavage

    Page 6

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    7
    M
    M
    a
    a
    t
    t
    h
    h
    e
    e
    m
    m
    a
    a
    t
    t
    i
    i
    c
    c
    s
    s PART – III
    SECTION – A
    1. f(x) = f(–x)
    x
    n
    = –(–x)
    n
    2.
    a
    a
    x
    log x
    lim
    x
    
    0 and
    x
    x
    a
    a
    lim
    log x
    
    3. g(x) = cos (x) – ||x| – 1|, x R
    4.
    dv rdh 2hdr
    r
    dt dt dt
    5. f(x) =
    4 3 2
    ax bx cx
    dx
    4 3 2
    f(0) = 0, f(–1) =
    a b c
    d 0
    4 3 2
    6. h(x) = f
    2
    (x) + (f(x))
    2
    h(x) = –2x(f(x))
    2
    g(x)
    7. Let F be the fuel charges. Then,
    2
    3v
    F
    16
    Let train covers kms. Then, total cost for running the train,
    3v
    C 300
    16 v
    For
    dc
    0
    dv
    and
    2
    2
    d c
    0
    dv
    v = 40 km/hr
    8. For maximum or minimum, f(x) = 0
    –x
    2
    + 8x – (12 + t) = 0
    t < 4
    9. AD divides BC in ratio AB : AC
    So, P.V. of D =
    ˆ ˆ ˆ ˆ ˆ ˆ
    AB 2i 5j 7k AC 2i 3j 4k
    AB AC
    10. Required vector
    1 2
    r x b x c
    and
    2
    r a a
    3
    1 1
    ˆ ˆ ˆ
    r 2i j x 2 k 4 x
    , where x
    1
    R
    12.
    2
    r a x a b c
    ,
    3
    r b x b c a
    ,
    1
    r c x c a b
    13. Equation of line x + 2y + z –1 + (–x + y – 2z – 2) = 0

    Page 7

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    8
    x + y – 2 + (x + z 2) = 0
    (0, 0, 1) lies on it
    = 0, = –2
    For point of intersection, z = 0
    14. Equation of lines, (y – mx) + , (z – c) = 0
    (y + mx) +
    2
    (z + c) = 0
    It meets at x–axis, hence
    1
    =
    2
    cy = mzx
    15. Slope of reflected ray =
    3
    4
    Equation of incident ray is (y + 4) =
    3
    x 2
    4
    i.e., 4y + 3x + 22 = 0
    16. Required area = 4(Area of S
    2
    OS
    4
    ) =
    1
    1
    4 ae 8be
    2
    17.
    1 1 1 1
    r r 1 r r 1
    sin tan tan r tan r 1
    r r 1 1 r r 1
    18.
    2 2 2
    1 1
    AG 2b 2c a a
    3 3
    ;
    2 2
    1
    BG b 4c
    3
    1
    GAB
    AG BG AB 5 13
    R
    4 12
    19. z
    n
    – 1 = (z – 1)(z – z
    1
    )(z – z
    2
    ) ….. (z – z
    n – 1
    )
    Differentiating w.r.t. x
    n 1
    n
    n 1
    nz 1 1 1
    .....
    z 1 z 2 z z
    z 1
    20.
    r
    1 1 1
    T
    2 1 3 5 ..... 2r 1 1 3 5 ..... 2r 1
    22.
    1 cosx cosx
    sinx 2cosx 0 sinx cosx 0 0
    0 0 sinx cosx
    tan x = –2 or tan x = 1
    23. Required area =
    2
    x 2
    0
    2 2x x dx
    (0, 1)
    y
    (2, 4)
    x
    x
    y
    O
    (2, 0)
    26. Combined mean = 16; d
    1
    = 9; d
    2
    = –6

    Page 8

  • AITS-CRT-IV-PCM (Sol)-JEE (Main)/14
    FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942
    website: www.fiitjee.com
    9
    2 2 2 2
    1 1 1 2 2 2
    2
    1 2
    n d n d
    67.2
    n n
    27. 1 1 + sin
    3
    x 2
    I
    2
    2 2
    28.
    dy
    xy
    dx
    x e
    lnx
    ydy dx
    x
    2
    y lnx c
    29. Let A(, 0) and B(, 0) be the two points
    OT
    2
    = OA·OB = =
    c
    a
    30.
    18
    1 x
    f x
    1 x
    18
    1 x 1
    f x 1
    x

    Page 9

logo StudyDocs
StudyDocs is a platform where students and educators can share educational resources such as notes, lecture slides, study guides, and practice exams.

Contacts

Links

Resources

© 2025 StudyDocs. All Rights Reserved.